
On Approximation of Double Barrier Option

ByoungSeon Choi∗ and Dongwoo Sheen†

Abstract

The trivariate joint probability density of Brownian motion and its

maximum and minimum is well-known as an infinite series of Gaussian

probability densities as well as a Fourier series. We present two formulas

of the trivariate joint probability density using infinite products, which

are computationally more efficient than the two infinite series solutions.

Using the trivariate joint probability densities, we can price double barrier

options under the Black-Scholes environment. Since the trivariate joint

probability density is represented by an infinite series or an infinite prod-

uct, we ought to use some approximate prices of a double barrier option.

In this paper we present Gaussian series and Fourier series approximations

of an Up-and-Out-Down-and-Out option, their error bounds, and stopping

rules for approximations. Some numerical examples are presented to show

usefulness of the approximations. Also, the results are compared to those

by inverse Laplace transforms.
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1 Introduction

A double-barrier is knocked either out or in, when the underlying touched a

given lower bound or a given upper bound prior to expiry. Among various dou-

ble barrier options, an Up-and-Out-Down-and-Out(UODO) option is the most

popular for not only academics but also practitioners. Since the risk-neutral

price of an UODO option under the Black-Scholes environment is represented

by infinite sums, it is necessary in practice to approximate the risk-neutral

price. In this paper we present some approximations of the risk-neutral price,

their error bounds, and stopping rules for obtaining desirable approximations.

2 Trivariate joint probability density of Standard
Brownian motion

Consider a standard Brownian motion {Wt|t ≥ 0} with W0 = 0. Denote its

maximum and minimum, respectively, by

MW
t

.
= max

0≤s≤t
Ws and mW

t
.
= min

0≤s≤t
Ws. (2.1)

To price a double-barrier option analytically under the Black-Scholes environ-

ment, it is necessary to derive the trivariate joint distribution of
(
Wt,m

W
t ,MW

t

)
.

In this section we derive it using several methods and compare the results in

computational point of view.

2.1 Gaussian Series Solution

Define a stopping time by

τWc
.
= inf {u ≥ 0 | Wu = c} . (2.2)
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Clearly the mapping c 7→ τWc is increasing and left-continuous.

The following lemma is about the reflection principle of a Brownian motion,

which is a basic tool to price a barrier option. See, e.g., Shreve (2004, pp.

111-113).

Lemma 1. For a standard Brownian motion {Wu |u ≥ 0}, the following holds.

(a) For any c > 0 and h > 0,

Pr
(
MW

t ≥ c,Wt ≥ c+ h
)
= Pr

(
MW

t ≥ c,Wt ≤ c− h
)
.

(b) For any c > 0,

Pr
(
MW

t ≥ c
)
= Pr

(
τWc ≤ t

)
= 2Pr (Wt ≥ c)

= Pr ( |Wt | ≥ c) = 2

[
1−

∫ ∞

c

ϕ(x; 0, t) dt

]
,

where ϕ (· ; m, v) denotes the normal probability density function with mean m

and variance v.

(c) For any t ≥ 0, the probability density function of τWc is

fτW
c
(t)

.
=

|c|√
2πt3/2

exp

(
− 1

2t
c2
)
.

(d) For any λ ≥ 0, the Laplace transform of τWc is

E
(
exp

(
−λτWc

))
= exp

(
−|c|

√
2λ
)
.

(e) For any M > 0, w ≤ M , and t ≥ 0, the joint probability density function of(
MW

t ,Wt

)
is

fMW
t ,Wt

(w,M)
.
= [2M − w]

√
2

πt3
exp

(
− [2M − w]2

2t

)
.

(f) For any M > 0, w ≤ M , and t ≥ 0, the conditional probability density

function of MW
t given Wt = w is

fMW
t |Wt

(M |w) .
=

2[2M − w]

t
exp

(
−2M [M − w]

2t

)
.

□
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Part (a) of Lemma 1 is called the reflection principle of a Brownian motion.

Using it, we can derive the following lemma. See, e.g., Freedman (1971, pp.

25-26).

Lemma 2. Let {Wt|t ≥ 0} be a standard Brownian motion. For each a < 0,

b > 0, and t > 0, define sets as

A
.
=
{
τWa < τWb

}
, At

.
=
{
τWa < t

}
, Bt

.
=
{
τWb < t

}
.

For a fixed y and a Borel set H, define functions as

Ry(z)
.
= 2y − z, Ry(H)

.
= {Ry(h) | h ∈ H} ,

IW (H)
.
= {ω | Wt(ω) ∈ H} , IWy (H)

.
= {ω | Wt(ω) ∈ Ry(H)} .

Then, the following equalities hold;

P
(
Ac ∩ IW (H)

)
= P

(
IWb (H)

)
− P

(
A ∩ IWb (H)

)
, (H ⊂ (−∞, a]),

P
(
A ∩ IW (H)

)
= P

(
IWa (H)

)
− P

(
Ac ∩ IWa (H)

)
, (H ⊂ [b,∞)). □

From now on, we assume a and b are constants satisfying

a < 0 < b. (2.3)

Using Lemmas 1 and 2, we can derive the joint probability of Wt ∈ I and

a ≤ mW
t ≤ MW

t ≤ b.
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Lemma 3. The joint probability of Wt ∈ I and a ≤ mW
t ≤ MW

t ≤ b is

Pr
(
a ≤ mW

t ≤ MW
t ≤ b,Wt ∈ I

)
=

∫
I

pWG (a, b, w; t) dw,

where the trivariate joint probability density pWG (a, b, w; t) is

pWG (a, b, w; t)
.
=

∞∑
k=−∞

[
1√
2πt

exp

(
− 1

2t
{w − 2k[b− a]}2

)
− 1√

2πt
exp

(
− 1

2t
{w − 2b+ 2k[b− a]}2

)]
.

□

This lemma and its variants are found in the probabilistic literature such as

Bachelier (1901, pp. 192-194, 1941), Lévy (1948, p. 213), Doob (1949), Darling

and Siegert (1953), Cox and Miller (1965, p. 222), Billingsley (1968, pp. 77-79),

Freedman (1970, pp. 26-7), Feller (1971, p. 341), Borodin and Salminen (2002,

p. 174), etc.

2.2 Fourier Series Solution

It is well-known (see, e.g., Evans [1998, p. 46]) that a normal probability den-

sity function ϕ(w ; m, t) satisfies the Kolmogorov-Fokker-Planck equation. More

specifically, pWG (a, b, w; t) satisfies

∂p (a, b, w; t)

∂t
=

1

2

∂2p (a, b, w; t)

∂w2
. (2.4)

It is known (see, e.g., Cox and Miller [1965, pp. 222-3]) that pWG (a, b, w; t)

satisfies the initial and boundary conditions

p (a, b, w; 0) = δ(w), (2.5)

p (a, b, a; t) = 0, (t > 0), (2.6)

p (a, b, b; t) = 0, (t > 0). (2.7)
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Thus, we may call pWG (a, b, x; t) the Gaussian series solution of the boundary

value problem composed of the PDE (2.4), the initial condition (2.5), and the

boundary conditions (2.6) and (2.7). We can solve the boundary value problem

using separation of variables, and obtain the Fourier series solution. See e.g.,

Cox and Miller (1965, pp. 222-223).

Lemma 4. The joint probability of Wt ∈ I and a ≤ mW
t ≤ MW

t ≤ b is

Pr
(
a ≤ mW

t ≤ MW
t ≤ b,Wt ∈ I

)
=

∫
I

pWG (a, b, w; t)dw,

where the trivariate joint probability density pWG (a, b, w; t) is

pWF (a, b, w; t)

.
=

∞∑
n=1

2

b− a
exp

(
−1

2

π2n2t

[b− a]
2

)
sin

(
−aπn

b− a

)
sin

(
πn [w − a]

b− a

)
.

□

Since pWG (a, b, w; t) and pWF (a, b, w; t) are the solutions of the same boundary

value problem, they should be the same. We can prove the equivalence through

several methods. Among them, one is using the Shah function X. See, e.g.,

Bracewell (2000, p. 82). Another is using Poisson summation formula. See,

e.g., Zwillinger (2003, p. 48).

2.3 Gaussian Product Solution

To present the Gaussian series solution pWG (a, b, w; t) as a difference of two infi-

nite products, we define three functions as

α
.
= exp

(
−4[b− a]2

t

)
, (2.8)

β(w)
.
= exp

(
2[b− a][w − b+ a]

t

)
, (2.9)

γ(w)
.
= β(w) exp

(
−4b[b− a]

t

)
. (2.10)
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Jacobi’s triple product identity is

∞∑
k=−∞

Ak[k−1]/2Bk =
∞∏
j=1

{[
1−Aj

] [
1 +

1

B
Aj

] [
1 +BAj−1

]}
(2.11)

for any complex numbers A satisfying |A| < 1 and B. For Eq. (2.11), readers

may refer to Zwillinger (2003, p. 48). Using Eq. (2.11), we get

∞∑
k=−∞

1√
2πt

exp

(
− 1

2t
{w − 2k[b− a]}2

)
dw

=
1√
2πt

exp

(
− 1

2t
w2

) ∞∑
k=−∞

βk(w)αk[k−1]/2

=
1√
2πt

exp

(
− 1

2t
w2

) ∞∏
j=1

{[
1− αj

] [
1 + 2 cosh

(
2[b− a]w

t

)
αj−1/2 + α2j−1

]}
,

(2.12)

and

∞∑
k=−∞

1√
2πt

exp

(
− 1

2t
{w − 2b− 2k[b− a]}2

)
dw

=
1√
2πt

exp

(
− 1

2t
[w − 2b]2

) ∞∑
k=−∞

γk(w)αk[k−1]/2

=
1√
2πt

exp

(
− 1

2t
[w − 2b]2

)
·

∞∏
j=1

{[
1− αj

] [
1 + 2 cosh

(
2[b− a][w − 2b]

t

)
αj−1/2 + α2j−1

]}
. (2.13)

Substituting Eqs. (2.12) and (2.13) into Lemma 3, we get the following propo-

sition.

Proposition 1. For a < 0 < b, the trivariate joint probability density pWG (a, b, w; t)
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is equal to

pWGP (a, b, w; t)

.
=

1√
2πt

exp

(
− 1

2t
w2

) ∞∏
j=1

{[
1− αj

] [
1 + 2 cosh

(
2[b− a]w

t

)
αj−1/2 + α2j−1

]}

− 1√
2πt

exp

(
− 1

2t
[w − 2b]2

)
·

∞∏
j=1

{[
1− αj

] [
1 + 2 cosh

(
2[b− a][w − 2b]

t

)
αj−1/2 + α2j−1

]}
,

where α = exp
(
−4[b− a]2/t

)
. □

The infinite product pWGP (a, b, w; t) is different from the one presented by

Choi and Roh (2013).

2.4 Fourier Product Solution

To present the Fourier series solution pWF (a, b, w; t) as a difference of two infinite

products, we define three functions as

θ
.
= exp

(
− π2t

[b− a]2

)
, (2.14)

η(w)
.
= exp

(
i
πw

b− a
− π2t

2[b− a]2

)
, (2.15)

ζ(w)
.
= exp

(
i
π[2a− w]

b− a
− π2t

2[b− a]2

)
. (2.16)

We know from Lemma 4 that

pWF (a, b, w; t) =
1

2[b− a]

∞∑
k=−∞

exp

(
i
πkw

b− a

)
exp

(
− π2k2t

2[b− a]2

)

− 1

2[b− a]

∞∑
k=−∞

exp

(
i
πk[w − 2a]

b− a

)
exp

(
− π2k2t

2[b− a]2

)
.

(2.17)
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It is clear that

1

2[b− a]

∞∑
k=−∞

exp

(
i
πkw

b− a

)
exp

(
− π2k2t

2[b− a]2

)

=
1

2[b− a]

∞∑
k=−∞

exp

(
i
πkw

b− a
− π2kt

2[b− a]2

)
exp

(
−π2tk[k − 1]

2[b− a]2

)
. (2.18)

Applying Eq. (2.11) to Eq. (2.18) yields

1

2[b− a]

∞∑
k=−∞

exp

(
i
πkw

b− a

)
exp

(
− π2k2t

2[b− a]2

)

=
1

2[b− a]

∞∏
j=1

{[
1− θj

] [
1 +

1

η(w)
θj
] [

1 + η(w)θj−1
]}

=
1

2[b− a]

∞∏
j=1

{[
1− θj

] [
1 + 2 cos

(
πw

b− a

)
θj−1/2 + θ2j−1

]}
. (2.19)

Using a similar method, we can show that

1

2[b− a]

∞∑
k=−∞

exp

(
i
πk[w − 2a]

b− a

)
exp

(
− π2k2t

2[b− a]2

)

=
1

2[b− a]

∞∏
j=1

{[
1− θj

] [
1 +

1

ζ(w)
θj
] [

1 + ζ(w)θj−1
]}

=
1

2[b− a]

∞∏
j=1

{[
1− θj

] [
1 + 2 cos

(
π[2a− w]

b− a

)
θj−1/2 + θ2j−1

]}
. (2.20)

From Eqs. (2.17), (2.19), and (2.20) we get the following proposition.

Proposition 2. For a < 0 < b, the trivariate joint probability density pWF (a, b, w; t)

is equal to

pWFP (a, b, w; t)

.
=

1

2[b− a]

∞∏
j=1

{[
1− θj

] [
1 + 2 cos

(
πw

b− a

)
θj−1/2 + θ2j−1

]}

− 1

2[b− a]

∞∏
j=1

{[
1− θj

] [
1 + 2 cos

(
π[2a− w]

b− a

)
θj−1/2 + θ2j−1

]}
,

where θ = exp
(
−π2t/[b− a]2

)
. □
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2.5 A General Form Of The Trivariate Joint Probability

The trivariate joint probability density of a Brownian motion and its maximum

and minimum is expressed by the Gaussian series solution pWG (a, b, w; t), the

Fourier series solution pWF (a, b, w; t), the Gaussian product solution pWGP (a, b, w; t),

and the Fourier product solution pWFP (a, b, w; t). Thus, we can present a general

form of the trivariate joint probability density as follows.

Theorem 1. Consider a standard Brownian motion {Wt|t ≥ 0} with W0 = 0

and its maximum MW
t and minimum mW

t . Then, pW (a, b, w; t) defined by

pW (a, b, w; t)
.
= c1p

W
G (a, b, w; t) + c2p

W
F (a, b, w; t)

+ c3p
W
GP (a, b, w; t) + c4p

W
FP (a, b, w; t)

with nonnegative constants c1, c2, c3, c4 satisfying
4∑

i=1

ci = 1 is the trivariate

joint probability density of
(
Wt,m

W
t ,MW

t

)
. □

Lemma 3 implies the probability that the Brownian motion starting from

W0 = 0 reaches neither the upper barrier b nor the lower barrier a before time

t is

P
(
a ≤ mW

t ≤ MW
t ≤ b

)
=

∫ b

a

pWG (a, b, w; t)dw

=

∞∑
k=−∞

[
N

(
b− 2k[b− a]√

t

)
−N

(
a− 2k[b− a]√

t

)]

−
∞∑

k=−∞

[
N

(
−b− 2k[b− a]√

t

)
−N

(
a− 2b− 2k[b− a]√

t

)]
, (2.21)

where N(·) is the cumulative distribution of a standard normal random variable.

Feller (1971, p. 342) calls this the total probability mass at epoch t. Also,
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Lemma 4 implies the total probability mass at epoch t is

P
(
a ≤ mW

t ≤ MW
t ≤ b

)
=

∫ b

a

pWF (a, b, w; t)dw

=
4

π

∞∑
m=1

1

2m− 1
sin

(
−π[2m− 1]a

b− a

)
exp

(
−π2[2m− 1]2t

2[b− a]2

)
. (2.22)

For each step of infinite summation P
(
a ≤ mW

t ≤ MW
t ≤ b

)
in Eq. (2.21),

we need to calculate four integrals of the normal probability density function

that does not have an explicit anti-derivative. However, we do not need any

integration when we use Eq. (2.22). Thus, it is computationally more efficient

to use pWF (a, b, w; t) than pWG (a, b, w; t) to calculateP
(
a ≤ mW

t ≤ MW
t ≤ b

)
.

When we calculate pWGP (a, b, w; t), we first do α, cosh
(

2[b−a]w
t

)
, and

cosh
(

2[b−a][w−2b]
t

)
, and then we need to do neither an exponential function ex-

cept αj and αj−1/2 nor a trigonometric function in the j-step of the infinite pro-

duction. Similarly, when we calculate pWFP (a, b, w; t), we first do θ, cos
(

πw
[b−a]

)
,

and cos
(

π[2a−w]
b−a

)
, and then we need to do neither an exponential function ex-

cept θj and θj−1/2 nor a trigonometric function in the j-step of the infinite

production. Moreover, we know an addition and a multiplication have the same

flop, or computational complexity. Thus, the product formulas pWGP (a, b, w; t)

and pWFP (a, b, w; t) are computationally more efficient than the series formulas

pWG (a, b, w; t) and pWF (a, b, w; t).

3 Trivariate joint probability density of General-
ized Brownian motion

Assume {Xu |u ≥ 0} satisfies

dXu = νdu+ σdWu, (3.1)
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where {Wu |u ≥ 0} is a standard Brownian motion with W0 = 0. Then, {Xu}

is a Brownian motion with drift parameter ν and instantaneous variance σ2.

Denote its starting value by x0. Eq. (3.1) implies

Xt = x0 + νt+ σWt. (3.2)

Denote the maximum and the minimum of {Xu | 0 ≤ u ≤ t}, respectively, by

MX
t

.
= max

0≤s≤t
Xs and mX

t
.
= min

0≤s≤t
Xs. (3.3)

Girsanov’s theorem is especially important in pricing derivatives. A simple

version of the theorem is as follows.

Lemma 5. Consider a standard Brownian motion {Wt | 0 ≤ t ≤ T} defined on

a probability space (Ω,F , P ) and a filtration {Ft | 0 ≤ t ≤ T} satisfying FT = F .

For an {Ft}-adapted process {θt | 0 ≤ t ≤ T}, we set

ξt
.
= exp

(
−
∫ t

0

θudWu − 1

2

∫ t

0

θ2udu

)
, (0 ≤ t ≤ T ),

WQ
t

.
= Wt +

∫ t

0

θudu, (0 ≤ t ≤ T ),

Q(A)
.
=

∫
A

ξT (ω)dP (ω), (A ∈ F).

Assume that E
(∫ T

0
θ2uξ

2
udu

)
< ∞. Then, Q is a probability measure, and{

WQ
t | 0 ≤ t ≤ T

}
is a standard Brownian motion under the probability mea-

sure Q. □

Lemma 5 is due to Cameron and Martin (1944), Maruyama (1954, 1955),

and Girsanov (1960). The expectation of a random variable X with respect to

the probability measure Q will be denoted as EQ(X). The following lemma can

be easily proved.
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Lemma 6. Let α and β be constants. Then,

exp(αx+ β)ϕ (x;m, v) = exp

(
αm+ β +

1

2
α2v

)
ϕ (x;m+ αv, v) .

□

3.1 Gaussian Series Solution

Let us derive the Gaussian series solution of the joint probability of Xt ∈ IX

and aX ≤ mX
t ≤ MX

t ≤ bX , where aX and bX are constants satisfying

aX < x0 + νt < bX . (3.4)

Eq. (3.4) corresponds to Eq. (2.3).

We first consider the case ν = 0 and x0 = 0. Set X̃t
.
= Xt/σ. Then, we

know

Pr
(
Xt ∈ IX , aX ≤ mX

t ≤ MX
t ≤ bX

)
= Pr

(
X̃t ∈

1

σ
IX ,

1

σ
aX ≤ mX̃

t ≤ M X̃
t ≤ 1

σ
bX
)

=

∞∑
k=−∞

∫
IX/σ

ϕ

(
x̃;

2k
[
bX − aX

]
σ

, t

)
dx̃

−
∞∑

k=−∞

∫
IX/σ

ϕ

(
x̃;

2bX − 2k
[
bX − aX

]
σ

, t

)
dx̃

=
∞∑

k=−∞

∫
IX

ϕ
(
x; 2k

[
bX − aX

]
, σ2t

)
dx

−
∞∑

k=−∞

∫
IX

ϕ
(
x; 2bX − 2k

[
bX − aX

]
, σ2t

)
dx, (3.5)

where the second equality holds by Lemma 3, and the third one does by the

transform x = σx̃.
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Secondly, we consider the case ν ̸= 0 and x0 = 0. Eq. (3.2) becomes

Xt = νt+ σWt. (3.6)

It is clear that

Xt
d∼ N

(
νt, σ2t

)
. (3.7)

Setting θu = ν/σ in Lemma 5, we get

ξt = exp

(
−ν

σ
Wt −

ν2

2σ2
t

)
. (3.8)

Eqs. (3.6) and (3.8) imply

ξt = exp

(
− ν

σ2
Xt +

ν2

2σ2
t

)
. (3.9)

Thus,

ξ−1
t = exp

(
ν

σ2
Xt −

ν2

2σ2
t

)
. (3.10)

Let Q be the corresponding equivalent martingale measure. Then,

Pr
(
Xt ∈ IX , aX ≤ mX

t ≤ MX
t ≤ bX

)
= E

(
1
(
Xt ∈ IX , aX ≤ mX

t ≤ MX
t ≤ bX

))
= EQ

(
1
(
Xt ∈ IX , aX ≤ mX

t ≤ MX
t ≤ bX

)
ξ−1
t

)
= EQ

(
1
(
Xt ∈ IX , aX ≤ mX

t ≤ MX
t ≤ bX

)
exp

(
ν

σ2
Xt −

ν2

2σ2
t

))
, (3.11)

where the second equality holds by Lemma 5, and the third equality does by

Eq. (3.10). Since {Xu/σ | 0 ≤ u ≤ t} is a standard Brownian motion with under

the probability measure Q, Eq. (3.5) implies

EQ

(
exp

(
ν

σ2
Xt −

ν2

2σ2
t

)
1
(
Xt ∈ IX , aX ≤ mX

t ≤ MX
t ≤ bX

))
=

∞∑
k=−∞

∫
IX

exp

(
ν

σ2
x− ν2

2σ2
t

)
ϕ
(
x; 2k

[
bX − aX

]
, σ2t

)
dx

−
∞∑

k=−∞

∫
IX

exp

(
ν

σ2
x− ν2

2σ2
t

)
ϕ
(
x; 2bX − 2k

[
bX − aX

]
, σ2t

)
dx. (3.12)
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Using Lemma 6, we can show that

exp

(
ν

σ2
x− ν2

2σ2
t

)
ϕ
(
x; 2k

[
bX − aX

]
, σ2t

)
= exp

(
2k
[
bX − aX

]
ν

σ2

)
ϕ
(
x; νt+ 2k

[
bX − aX

]
, σ2t

)
, (3.13)

exp

(
ν

σ2
x− ν2

2σ2
t

)
ϕ
(
x; 2bX − 2k

[
bX − aX

]
, σ2t

)
dx

= exp

(
2
{
bX − k

[
bX − aX

]}
ν

σ2

)
ϕ
(
x; νt+ 2

{
bX − k

[
bX − aX

]}
, σ2t

)
.

(3.14)

We know from Eqs. (3.11) ∼ (3.14) that the joint probability of Xt ∈ IX and

aX ≤ mX
t ≤ MX

t ≤ bX is

Pr
(
aX ≤ mX

t ≤ MX
t ≤ bX , Xt ∈ IX

)
=

∫
IX

pX,0
G

(
aX , bX , x; t

)
dx, (3.15)

where the trivariate joint probability density pX,0
G

(
aX , bX , x; t

)
is

pX,0
G

(
aX , bX , x; t

)
.
=

∞∑
k=−∞

exp

(
2k
[
bX − aX

]
ν

σ2

)
ϕ
(
x; νt+ 2k

[
bX − aX

]
, σ2t

)
−

∞∑
k=−∞

exp

(
2
{
kaX − [k − 1]bX

}
ν

σ2

)
ϕ
(
x; νt+ 2

{
kaX − [k − 1]bX

}
, σ2t

)
.

(3.16)

Thirdly, we consider the case ν ̸= 0 and x0 ̸= 0. Substituting X̂t = Xt − x0,

aX̂ = aX − x0, and bX̂ = bX − x0 into Eq. (3.16), we know the trivariate joint

15



probability density pXG
(
aX , bX , x; t

)
is

pXG
(
aX , bX , x; t

)
= pX̂,0

G

(
aX̂ , bX̂ , x− x0; t

)
=

∞∑
k=−∞

exp

2k
[
bX̂ − aX̂

]
ν

σ2

ϕ
(
x− x0; νt+ 2k

[
bX̂ − aX̂

]
, σ2t

)

−
∞∑

k=−∞

exp

2
{
kaX̂ − [k − 1]bX̂ − x0

}
ν

σ2


· ϕ
(
x− x0; νt+ 2

{
kaX̂ − [k − 1]bX̂

}
, σ2t

)
. (3.17)

Thus, we get the following lemma.

Lemma 7. The joint probability of Xt ∈ IX and a ≤ mX
t ≤ MX

t ≤ b of the

generalized Brown motion is

Pr
(
a ≤ mX

t ≤ MX
t ≤ b,Xt ∈ IX

)
=

∫
IX

pXG (a, b, x; t) dx,

where the trivariate joint probability density pXG (a, b, x; t) is

pXG
(
aX , bX , x; t

)
.
=

∞∑
k=−∞

exp

(
2k
[
bX − aX

]
ν

σ2

)
ϕ
(
x;x0 + νt+ 2k

[
bX − aX

]
, σ2t

)
−

∞∑
k=−∞

exp

(
2
{
kaX − [k − 1]bX − x0

}
ν

σ2

)
· ϕ
(
x;x0 + νt+ 2

{
kaX − [k − 1]bX

}
, σ2t

)
.

□
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3.2 Fourier Series Solution

Let us derive the Fourier series solution of the joint probability of Xt ∈ IX and

aX ≤ mX
t ≤ MX

t ≤ bX , where aX and bX satisfy Eq. (3.4).

We first consider the case ν = 0 and x0 = 0. Set X̃t
.
= Xt/σ. We know

Pr
(
Xt ∈ IX , aX ≤ mX

t ≤ MX
t ≤ bX

)
= Pr

(
X̃t ∈

1

σ
IX ,

1

σ
aX ≤ mX̃

t ≤ M X̃
t ≤ 1

σ
bX
)

=

∞∑
n=1

∫
IX/σ

2σ

bX − aX
exp

(
−1

2

σ2π2n2t

[bX − aX ]
2

)

· sin
(

−aXπn

bX − aX

)
sin

(
πn
[
σx̃− aX

]
bX − aX

)
dx̃

=
∞∑

n=1

∫
IX

2

bX − aX
exp

(
−1

2

σ2π2n2t

[bX − aX ]
2

)

· sin
(

−aXπn

bX − aX

)
sin

(
πn
[
x− aX

]
bX − aX

)
dx, (3.18)

where the second equality holds by Lemma 4, and the third one does by the

transform x = σx̃.

Secondly, we consider the case ν ̸= 0 and x0 = 0. Setting θu = ν/σ in

Lemma 5, we know from Eq. (3.11) that

Pr
(
Xt ∈ IX , aX ≤ mX

t ≤ MX
t ≤ bX

)
= EQ

(
1
(
Xt ∈ IX , aX ≤ mX

t ≤ MX
t ≤ bX

)
exp

(
ν

σ2
Xt −

ν2

2σ2
t

))
. (3.19)

Since {Xu/σ | 0 ≤ u ≤ t} is a standard Brownian motion with under the proba-

bility measure Q, Eq. (3.18) implies

EQ

(
exp

(
ν

σ2
Xt −

ν2

2σ2
t

)
1
(
Xt ∈ IX , aX ≤ mX

t ≤ MX
t ≤ bX

))
=

∞∑
n=1

∫
IX

exp

(
ν

σ2
x− ν2

2σ2
t

)
2

bX − aX
exp

(
−1

2

σ2π2n2t

[bX − aX ]
2

)

· sin
(

−aXπn

bX − aX

)
sin

(
πn
[
x− aX

]
bX − aX

)
dx. (3.20)

17



Thus, the joint probability of Xt ∈ IX and aX ≤ mX
t ≤ MX

t ≤ bX is

Pr
(
aX ≤ mX

t ≤ MX
t ≤ bX , Xt ∈ IX

)
=

∫
IX

pX,0
F

(
aX , bX , x; t

)
dx, (3.21)

where the trivariate joint probability density pX,0
F

(
aX , bX , x; t

)
is

pX,0
F

(
aX , bX , x; t

)
= exp

(νx
σ2

) ∞∑
n=1

2

bX − aX
exp

(
−1

2

{
ν2

σ2
+

π2σ2n2

[bX − aX ]
2

}
t

)

· sin
(

−aXπn

bX − aX

)
sin

(
πn
[
x− aX

]
bX − aX

)
. (3.22)

Thirdly, we consider the case ν ̸= 0 and x0 ̸= 0. Substituting X̂t = Xt − x0,

aX̂ = aX − x0, and bX̂ = bX − x0 into Eq. (3.22), we get the following lemma.

Lemma 8. The joint probability of Xt ∈ I and a ≤ mX
t ≤ MX

t ≤ b is

Pr
(
a ≤ mX

t ≤ MX
t ≤ b,Xt ∈ I

)
=

∫
I

pXF (a, b, x; t)dx,

where the trivariate joint probability density pXF (a, b, x; t) is

pXF
(
aX , bX , x; t

)
= exp

(
ν [x− x0]

σ2

) ∞∑
n=1

2

bX − aX
exp

(
−1

2

{
ν2

σ2
+

π2σ2n2

[bX − aX ]
2

}
t

)

· sin

(
πn
[
x0 − aX

]
bX − aX

)
sin

(
πn
[
x− aX

]
bX − aX

)
.

□

It is well-known (see, e.g., Cox and Miller [1967, p. 215] and Choi and Roh

[2013]) that the transition probability density function p (xs, s;xu, u) for s < u

of the diffusion process in Eq. (3.1) satisfies the Kolmogorov-Fokker-Planck

equation

∂p (xs, s;xu, u)

∂u
=

1

2
σ2 ∂

2p (xs, s;xu, u)

∂x2
u

− ν
∂p (xs, s;xu, u)

∂xu
. (3.23)

18



Suppose there exist two absorbing barriers aX and bX . Then, the initial and

boundary conditions become

p (x0, 0;x, 0) = δ (x− x0) , (3.24)

p
(
x0, 0;xu, a

X
)
= 0, (u > 0), (3.25)

p
(
x0, 0;xu, b

X
)
= 0, (u > 0), (3.26)

where δ(x) is the Dirac delta function, which is a distribution defined by δ(x) = 0

for x ̸= 0); otherwise, ∞ and is normalized so that
∫∞
−∞ δ(x)dx = 1. As Cox and

Miller (1967, p. 222) state, we place sources at the points 2k
[
bX − aX

]
with

strengths exp
(
2k
[
bX − aX

]
ν/σ2

)
and sources at the points 2kaX − 2[k− 1]bX

with strengths − exp
({

2kaX − 2[k − 1]bX
}
ν/σ2

)
. Then, the linear superposi-

tion of solutions for each source weighted by the corresponding strength becomes

the solution, i.e.,

p (x0, 0;x, t) =

∞∑
k=−∞

exp
(
2k
[
bX − aX

] ν

σ2

)
·ϕ
(
x;x0 + νt+ 2k

[
bX − aX

]
, σ2t

)
−

∞∑
k=−∞

exp
(
2
{
kaX − [k − 1]bX − x0

} ν

σ2

)
·ϕ
(
x;x0 + νt+

{
2kaX − 2[k − 1]bX

}
, σ2t

)
,

(3.27)

which equals to the Gaussian series solution in Lemma 7. Solving the boundary

value problem consisting of the PDE (3.23), the initial condition (3.24), and the

boundary conditions (3.25) and (3.26) using separation of variables, we get

p (x0, 0;x, t)

.
= exp

(
ν [x− x0]

σ2

) ∞∑
k=1

exp

(
−1

2

{(ν
σ

)2
+

(
−πaXk

bX − aX

)2
}
t

)

· 2

bX − aX
sin

πaXk

bX − aX
sin

π
[
x− aX

]
k

bX − aX
, (3.28)

which equals to the Fourier series solution in Lemma 8.
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4 Trivariate joint probability density of Geomet-
ric Brownian motion

Set Su
.
= exp (Xu), s0

.
= exp (x0), and µ

.
= ν + σ2/2, where {Xu |u ≥ 0} is the

geometric Brownian motion satisfying Eq. (3.2). Ito-Doeblin lemma implies

{Su} satisfies the stochastic differential equation;

dSu = µSudu+ σSudWu, (4.1)

where {Wu | u ≥ 0} is a standard Brownian motion with W0 = 0. We call

µ and σ the drift and the volatility, respectively. Denote its maximum and

minimum by

MS
t

.
= max

0≤u≤t
Su and mS

t
.
= min

0≤u≤t
Su. (4.2)

Let aS and bS be constants satisfying

aS < s0 exp(νt) < bS . (4.3)

Eq. (4.3) corresponds to Eq. (3.4). Also, assume that IS ⊂
[
aS , bS

]
is a Borel

set.

4.1 Gaussian Series Solution

Applying Xu = lnSu to Eq. (7), we know the trivariate joint probability density

of St ∈ IS and aS ≤ mS
t ≤ MS

t ≤ bS is

pSG
(
aS , bS , s; t

)
.
=

∞∑
k=−∞

exp

(
2k
[
ln bS − ln aS

]
ν

σ2

)
ϕ
(
ln s; ln s0 + νt+ 2k

[
ln bS − ln aS

]
, σ2t

) 1
s

−
∞∑

k=−∞

exp

(
2
{
k ln aS − [k − 1] ln bS − ln s0

}
ν

σ2

)

· ϕ
(
ln s; ln s0 + νt+ 2

{
k ln aS − [k − 1] ln bS

}
, σ2t

) 1
s
. (4.4)

Thus, we get the following lemma.
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Lemma 9. The joint probability of St ∈ IS and aS ≤ mS
t ≤ MS

t ≤ bS is

Pr
(
aS ≤ mS

t ≤ MS
t ≤S b, St ∈ IS

)
=

∫
IS

pSG(a, b, s; t)ds,

where the trivariate joint probability density pSG
(
aS , bS , s; t

)
is

pSG
(
aS , bS , s; t

)
=

∞∑
k=−∞

{[
bS

aS

]k}2µ/σ2−1

ϕ

(
ln

St

s0
; ln

[
bS

aS

]2k
+

[
µ− σ2

2

]
t, σ2t

)
1

s

−
∞∑

k=−∞

{[
aS

bS

]k
aS

s0

}2µ/σ2−1

ϕ

(
ln

Sts0

[aS ]
2 ; ln

[
aS

bS

]2k
+

[
µ− σ2

2

]
t, σ2t

)
1

s
.

□

4.2 Fourier Series Solution

Applying X = lnS to Lemma 8, we know the trivariate joint probability density

is

pSF
(
aS , bS , s; t

)
.
= exp

(
ν [ln s− ln s0]

σ2

) ∞∑
n=1

2

ln bS − ln aS
exp

(
−1

2

{
ν2

σ2
+

π2σ2n2

[ln bS − ln aS ]
2

}
t

)

· sin

(
πn
[
ln s0 − ln aS

]
ln bS − ln aS

)
sin

(
πn
[
ln s− ln aS

]
ln bS − ln aS

)
1

s
.

(4.5)

Thus, the following lemma holds.

Lemma 10. The joint probability of St ∈ IS and aS ≤ mS
t ≤ MS

t ≤ bS is

Pr
(
aS ≤ mS

t ≤ MS
t ≤S b, St ∈ IS

)
=

∫
IS

pSF (a, b, s; t)ds,
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where the trivariate joint probability density pSF
(
aS , bS , s; t

)
is

pSF
(
aS , bS , s; t

)
=

[
s

s0

]ν/σ2 ∞∑
n=1

2

ln(bS/aS)
exp

(
−1

2

{[µ
σ
− σ

2

]2
+

π2σ2n2

[ln(bS/aS)]
2

}
t

)

· sin

(
πn ln

(
s0/a

S
)

ln(bS/aS)

)
sin

(
πn ln

(
s/aS

)
ln(bS/aS)

)
1

s
.

□

5 Double Barrier Option Pricing

The underlying process {Su | t ≤ u ≤ T} is assumed to be a geometric Brownian

motion satisfying

dSu = rSudu+ σSudW
Q
u , (5.1)

where
{
WQ

t | t ≤ u ≤ T
}

is a standard Brownian motion under the risk-neutral

measure Q. Denote its maximum and the minimum, respectively, by

MS
[t,u]

.
= max

t≤s≤u
Ss and mS

[t,u]
.
= min

t≤s≤u
Ss. (5.2)

The risk-neutral pricing formula for the UODO option with strike K and ma-

turity T is

CUODO
t = e−rτEQ

t

(
[ST −K]

+
1
(
A < mS

[t,T ] ≤ MS
[t,T ] < B

))
, (5.3)

where [ST −K]
+ .

= max {ST −K, 0}. Assume that the constant lower barrier

A and the constant upper barrier B satisfy

A < st exp(νrτ) < B, (5.4)

where τ
.
= T − t and

νr
.
= r − σ2

2
. (5.5)
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The condition (5.4) is equivalent to the condition (4.3).

Applying Lemma 5 to Eq. (5.1) yields

d lnSu = νrdu+ σdWQ
u . (5.6)

Eq. (5.6) implies

ln
ST

St
= N

(
νrτ, σ

2τ
)
. (5.7)

Set Xu
.
= lnSu and xt

.
= lnSt. We know from Eq. (5.6) that {Xu | t ≤ u ≤ T}

is the Brownian motion with drift parameter νr and instantaneous variance σ2.

Denote its maximum and minimum, respectively, by

MX
[t,u]

.
= max

t≤s≤u
Xs and mX

[t,u]
.
= min

t≤s≤u
Xs. (5.8)

Set k
.
= lnK, γA

.
= lnA, and γB

.
= lnB. The condition (5.4) becomes

γA < xt + νrτ < γB . (5.9)

The risk-neutral pricing formula for the UODO option in Eq. (5.3) becomes

CUODO
t = e−rτEQ

t

([
Ste

XT−xt −K
]+

1
(
γA < mX

[t,T ] ≤ MX
[t,T ] < γB

))
.

(5.10)

5.1 Gaussian Series Solution

We know from Lemma 7 that the transition probability of {Xu} is

pQG (xt, t;xT , T )

.
=

∞∑
n=−∞

exp

(
2n [γB − γA] νr

σ2

)
ϕ
(
xT ;xt + νrτ + 2n [γB − γA] , σ

2τ
)

−
∞∑

n=−∞
exp

(
2 {nγA − [n− 1]γB − xt} νr

σ2

)
· ϕ
(
xT ;−xt + νrτ + 2 {nγA − [n− 1]γB} , σ2τ

)
. (5.11)
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Putting Eq. (5.11) to Eq. (5.10), we get

CUODO
t = StI1 −Ke−rτI2, (5.12)

where

I1
.
= e−rτ

∫ γB

k

exT−xtpQG (xt, t;xT , T ) dxT , (5.13)

I2
.
=

∫ γB

k

pQG (xt, t;xT , T ) dxT . (5.14)

We can easily show that

2νr
σ2

=
2r

σ2
− 1, (5.15)∫ γB

k

ϕ
(
xT ;m,σ2τ

)
dxT = N

(
m− k

σ
√
τ

)
−N

(
m− γB
σ
√
τ

)
. (5.16)

Applying the transition probability function pQG (xt, t;xT , T ) in Eq. (5.11)

to Eq. (5.14), we get

I2 =
∞∑

n=−∞
exp

(
2nνr
σ2

[γB − γA]

)
I21,n

−
∞∑

n=−∞
exp

(
2νr
σ2

{nγA − [n− 1]γB − xt}
)
I22,n, (5.17)

where

I21,n
.
=

∫ γB

k

ϕ
(
xT ;xt + νrτ + 2n [γB − γA] , σ

2τ
)
dxT , (5.18)

I22,n
.
=

∫ γB

k

ϕ
(
xT ;−xt + νrτ + 2 {nγA − [n− 1]γB} , σ2τ

)
dxT . (5.19)

Applying Eqs. (5.15) and (5.16) to Eq. (5.18), we get

I21,n = N

(
xt + νrτ + 2n [γB − γA]− k

σ
√
τ

)
−N

(
xt + νrτ + 2n [γB − γA]− γB

σ
√
τ

)
= N

(
d1,n − σ

√
τ
)
−N

(
d2,n − σ

√
τ
)
, (5.20)
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where

d1,n
.
=

1

σ
√
τ

{
ln

StB
2n

KA2n
+

[
r +

σ2

2

]
τ

}
, (5.21)

d2,n
.
=

1

σ
√
τ

{
ln

StB
2n

BA2n
+

[
r +

σ2

2

]
τ

}
. (5.22)

Applying Eqs. (5.15) and (5.16) to Eqs. (5.19), we get

I22,n = N

(
−xt + νrτ + 2 {nγA − [n− 1]γB} − k

σ
√
τ

)
−N

(
−xt + νrτ + 2 {nγA − [n− 1]γB} − γB

σ
√
τ

)
= N

(
d3,n − σ

√
τ
)
−N

(
d4,n − σ

√
τ
)
, (5.23)

where

d3,n
.
=

1

σ
√
τ

{
ln

A2n

StKB2n−2
+

[
r +

σ2

2

]
τ

}
, (5.24)

d4,n
.
=

1

σ
√
τ

{
ln

A2n

StB2n−1
+

[
r +

σ2

2

]
τ

}
. (5.25)

We know from Eqs. (5.17), (5.20), and (5.23) that

I2 =
∞∑

n=−∞

[
Bn

An

]2r/σ2−1 [
N
(
d1,n − σ

√
τ
)
−N

(
d2,n − σ

√
τ
)]

−
∞∑

n=−∞

[
An

StBn−1

]2r/σ2−1 [
N
(
d3,n − σ

√
τ
)
−N

(
d4,n − σ

√
τ
)]

.

(5.26)

Substituting the transition probability function p (xt, t;xT , T ) in Eq. (5.11)

into Eq. (5.13), we get

I1 =

∞∑
n=−∞

exp

(
2nνr
σ2

[γB − γA]

)
I11,n

−
∞∑

n=−∞
exp

(
2νr
σ2

{nγA − [n− 1]γB − xt}
)
I12,n, (5.27)
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where

I11,n
.
=

∫ γB

k

e−rτexT−xtϕ
(
xT ;xt + νrτ + 2n [γB − γA] , σ

2τ
)
dxT .(5.28)

I12,n
.
=

∫ γB

k

e−rτexT−xtϕ
(
xT ;−xt + νrτ + 2 {nγA − [n− 1]γB} , σ2τ

)
dxT .

(5.29)

Applying Lemma 6 to Eq. (5.28), we get

I11,n = exp (2n [γB − γA])

·
∫ γB

k

ϕ

(
xT ;xt +

[
r +

σ2

2

]
τ + 2n [γB − γA] , σ

2T

)
dxT .(5.30)

Applying Eq. (5.16) to Eqs. (5.30), we get

A2n

B2n
I11,n = N

(
1

σ
√
τ
B2n {xt + νrτ + 2n [γB − γA]− k}+ σ

√
τ

)
−N

(
1

σ
√
τ
{xt + νrτ + 2n [γB − γA]− γB}+ σ

√
τ

)
= N (d1,n)−N (d2,n) . (5.31)

Applying Lemma 6 to Eq. (5.29), we get

I12,n = exp (−2xt + 2 {nγA − [n− 1]γB})

·
∫ γB

k

ϕ

(
xT ;−xt +

[
r +

σ2

2

]
τ + 2 {nγA − [n− 1]γB} , σ2T

)
dxT .

(5.32)

Applying Eq. (5.16) to Eq. (5.32), we get

S2
tB

2n−2

A2n
I12,n = N

(
1

σ
√
τ
[−xt + νrτ + 2 {nγA − [n− 1]γB} − k] + σ

√
τ

)
−N

(
1

σ
√
τ
[−xt + νrτ + 2 {nγA − [n− 1]γB} − τB ] + σ

√
τ

)
= N (d3,n)−N (d4,n) . (5.33)
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We know from Eqs. (5.27), (5.31), and (5.33) that

I1 =
∞∑

n=−∞

[
Bn

An

]2r/σ2+1

[N (d1,n)−N (d2,n)]

−
∞∑

n=−∞

[
An

Bn−1St

]2r/σ2+1

[N (d3,n)−N (d4,n)] . (5.34)

Putting Eqs. (5.26) and (5.34) into Eq. (5.12) yields the following lemma.

Lemma 11. Assume the underlying process {Su | t ≤ u ≤ T} satisfies the stochas-

tic differential equation Eq. (5.1). The Gaussian series solution of the UODO

option price at time t with strike price K, maturity T , upper bound B, and

lower bound A is

CUODO
t;G

=
∞∑

n=−∞
St

[
Bn

An

]2r/σ2+1

[N (d1,n)−N (d2,n)]

−
∞∑

n=−∞
e−rτK

[
Bn

An

]2r/σ2−1 [
N
(
d1,n − σ

√
τ
)
−N

(
d2,n − σ

√
τ
)]

−
∞∑

n=−∞
St

[
An

StBn−1

]2r/σ2+1

[N (d3,n)−N (d4,n)]

+

∞∑
n=−∞

e−rτK

[
An

StBn−1

]2r/σ2−1 [
N
(
d3,n − σ

√
τ
)
−N

(
d4,n − σ

√
τ
)]

.

□

Readers may refer to Zhang (1998, pp. 309-314) for Lemma 11,
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5.2 Fourier Series Solution

We know from Lemma 8 that the transition probability of {Xu} is

pQF (xt, t;xu, u) =

∞∑
n=1

ane
−λn[u−t] exp

(
νr [xu − xt]

σ2

)
sin

(
nπ [xu − γA]

γB − γA

)
,

(5.35)

where

an =
2

γB − γA
sin

(
nπ [xt − γA]

γB − γA

)
, (5.36)

λn
.
=

1

2

{
ν2r
σ2

+
n2π2σ2

[γB − γA]
2

}
. (5.37)

Applying Eq. (5.35) to Eq. (5.10), we know the risk-neutral pricing formula for

the UODO option is

CUODO
t = StJ1 −Ke−rτJ2, (5.38)

where

J1
.
= e−rτ

∫ b

k

exT−xtpQF (xt, t;xT , T ) dxT , (5.39)

J2
.
=

∫ b

k

pQF (xt, t;xT , T ) dxT . (5.40)

Putting Eq. (5.35) into Eq. (5.40), we get

J2 =

∞∑
n=1

an exp (−λnτ) exp

(
νr [γA − xt]

σ2

)

·
∫ b

k

exp

(
νr [xT − γA]

σ2

)
sin

(
πn [xT − γA]

γB − γA

)
dxT

=
∞∑

n=1

anJ2,n, (5.41)

where

J2,n
.
= exp (−λnτ) exp

(
νr [γA − xt]

σ2

)
·
∫ γB−γA

k−γA

exp
( νr
σ2

z
)
sin

(
πn

γB − γA
z

)
dz. (5.42)
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The following indefinite integral formula is useful to compute integrals in J1 and

J2; ∫
eαx sinβxdx =

1

α2 + β2
[α sinβx− β cosβx] eαx. (5.43)

Applying Eq. (5.43) to Eq. (5.42), we get

J2,n = exp

(
−1

2

{
1

σ2

[
r − σ2

2

]2
+

π2σ2n2

[γB − γA]
2

}
τ

)

· exp
([

r

σ2
− 1

2

]
[γA − xt]

){[
r

σ2
− 1

2

]2
+

π2n2

[γB − γA]
2

}−1

·
[{

πn

[γB − γA]
[−1]n−1

}
exp

([
r

σ2
− 1

2

]
[γB − γA]

)
−
{[

r

σ2
− 1

2

]
sin

(
πn

k − γA
γB − γA

)
− πn

[γB − γA]
cos

(
πn

k − γA
γB − γA

)}
· exp

([
r

σ2
− 1

2

]
[k − γA]

)]
. (5.44)

Putting Eq. (5.35) into Eq. (5.39), we get

J1 = e−rτeγA−xt

∞∑
n=1

ane
−λnτ exp

(
νr [γA − xt]

σ2

)

·
∫ b

k

exT−γA exp

(
νr [xT − γA]

σ2

)
sin

(
nπ [xT − γA]

γB − γA

)
dxT

=
∞∑

n=1

anJ1,n, (5.45)

where

J1,n
.
= e−rτ exp (−λnτ) e

γA−xt exp

(
νr [γA − xt]

σ2

)
·
∫ γB−γA

k−γA

exp
([ νr

σ2
+ 1
]
z
)
sin

(
nπ

γB − γA
z

)
dz. (5.46)
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Applying Eq. (5.43) to Eq. (5.46), we get

J1,n = exp

(
−1

2

{
1

σ2

[
r +

σ2

2

]2
+

π2σ2n2

[γB − γA]
2

}
τ

)

· exp
([

r

σ2
+

1

2

]
[γA − xt]

){[
r

σ2
+

1

2

]2
+

π2n2

[γB − γA]
2

}−1

·
[{

πn

[γB − γA]
[−1]n−1

}
exp

([
r

σ2
+

1

2

]
[γB − γA]

)
−
{[

r

σ2
+

1

2

]
sin

(
πn

k − γA
γB − γA

)
− πn

[γB − γA]
cos

(
πn

k − γA
γB − γA

)}
· exp

([
r

σ2
+

1

2

]
[k − γA]

)]
. (5.47)

Define a function Jn(·) by

Jn(η)
.
= exp

(
−1

2

{
η2

σ2
+

π2σ2n2

[γB − γA]
2

}
τ

)

· exp
( η

σ2
[γA − xt]

){ η2

σ4
+

π2n2

[γB − γA]
2

}−1

·
[{

πn

[γB − γA]
[−1]n−1

}
exp

( η

σ2
[γB − γA]

)
−
{

η

σ2
sin

(
πn

k − γA
γB − γA

)
− πn

[γB − γA]
cos

(
πn

k − γA
γB − γA

)}
· exp

( η

σ2
[k − γA]

)]
. (5.48)

We know Eq. (5.44) and Eq. (5.47) that

J1,n = Jn

(
r +

σ2

2

)
and J2,n = Jn

(
r − σ2

2

)
. (5.49)

Substituting Eqs. (5.41), (5.45), and (5.49) into Eq. (5.38), we get the

following lemma.

Lemma 12. Assume the underlying process {Su | t ≤ u ≤ T} satisfies the stochas-

tic differential equation Eq. (5.1). The Fourier series solution of the UODO
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option price at time t with strike price K, maturity T , upper bound B, and

lower bound A is

CUODO
t;F =

∞∑
n=1

2

γB − γA
sin

(
nπ [xt − γA]

γB − γA

)
·
{
StJn

(
r +

σ2

2

)
−Ke−rτJn

(
r − σ2

2

)}
.

□

Readers may refer to Zhang (1998, pp. 315-316) for Lemma 11,

5.3 Laplace Transform Solution

Geman and Yor (1996) represent the risk-neutral price CUODO
t using an inverse

Laplace transform. We will compare numerically this Laplace transform solution

with the Gaussian series solution as well as the Fourier series solution.

Define a stopping time by

τS[A,B]
.
= τSA ∧ τSB . (5.50)

The risk-neutral pricing formula for the UODO option in Eq. (5.3) becomes

CUODO
t = e−rτEQ

t

(
[ST −K]

+
1
(
τS[A,B] > T

))
, (5.51)

Set

Ŵs
.
= Ws+t −Wt, (s ≥ 0), (5.52)

Ŝs
.
= exp

(
νrs+ σŴs

)
, (s ≥ 0), (5.53)

τ Ŝ[α,β]
.
= τ Ŝα ∧ τ Ŝβ . (5.54)
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We know

Ŝu−t =
Su

St
, (u ≥ t), (5.55)

1
(
τS[A,B] > T

)
= 1

(
τS[A,B] > t

)
1
(
τ Ŝ[A/St , B/St]

> T − t
)
. (5.56)

Since 1
(
τS[A,B] > t

)
is Ft-measurable,

EQ
t

(
[ST −K]

+
1
(
τS[A,B] > T

))
= 1

(
τS[A,B] > t

)
StE

Q
t

([
Ŝτ − K

St

]+
1
(
τ Ŝ[A/St , B/St]

> τ
))

. (5.57)

Eqs. (5.51) and (5.57) imply

CUODO
t = e−rτStE

Q
t

([
Ŝτ − K̂

]+
1

(
τ Ŝ
[Â,B̂]

> τ

))
, (5.58)

where

K̂
.
=

K

St
, Â

.
=

A

St
, B̂

.
=

B

St
. (5.59)

Define a function as

φK̂
Â,B̂

(τ)
.
= EQ

t

([
Ŝτ − K̂

]+
1

(
τ Ŝ
[Â,B̂]

< τ

))
. (5.60)

Clearly,

1

(
τ Ŝ
[Â,B̂]

> τ

)
= 1− 1

(
τ Ŝ
[Â,B̂]

< τ

)
. (5.61)

Eqs. (5.58) and (5.61) imply

CUODO
t = St BS

(
0, 1, σ, τ, K̂

)
− e−rτSt φ

K̂
Â,B̂

(τ), (5.62)

where BS
(
0, 1, σ, τ, K̂

)
denotes the fair price at time 0 of a plain-vanilla call

option with maturity τ and strike price K̂ written on an underlying which has

value 1 at time 0 and volatility σ.
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Consider the following Laplace transform of φK̂
Â,B̂

(s) with respect to time:

Ψ(λ)
.
=

∫ ∞

0

e−λsφK̂
Â,B̂

(s) ds. (5.63)

Let

ν̂
.
=

νr
σ2

=
r

σ2
− 1

2
, (5.64)

Geman and Yor (1996, p. 371) show that

Ψ(λ) =
1

σ2
Φ

(
λ

σ2

)
, (5.65)

where

Φ(θ)
.
=

sinh (µ̂γB)

sinh (µ̂ [γB − γA])
g1 +

sinh (−µ̂γA)

sinh (µ̂ [γB − γA])
g2, (5.66)

µ̂
.
=
√
2θ + ν̂2, (5.67)

g1
.
=

K̂ ν̂+1−µ̂Aµ

µ̂ [µ̂− ν̂] [µ̂− ν̂ − 1]
, (5.68)

g2
.
= 2

{
Bν̂+1

µ̂2 − [ν̂ + 1]
2 − K̂Bν̂

µ̂2 − ν̂2

}
+

B−µ̂K̂ ν̂+1+µ̂

µ̂ [µ̂+ ν̂] [µ̂+ ν̂ + 1]
. (5.69)

Eqs. (5.63) and (5.65) imply

φK̂
Â,B̂

(τ) =
{
L−1Ψ

}
(τ) =

{
L−1Φ

} (
σ2τ

)
, (5.70)

where L−1 is the inverse of the Laplace transform operator.

Combining Eqs. (5.62) and (5.70), we get the following lemma.

Lemma 13. Assume the underlying process {Su | t ≤ u ≤ T} satisfies the stochas-

tic differential equation Eq. (5.1). The Laplace transform solution of the UODO

option price at time t with strike price K, maturity T , upper bound B, and lower

bound A is

CUODO
t;L = St

[
BS
(
0, 1, σ, τK̂

)
− e−rτ

{
L−1Φ

} (
σ2τ

)]
,

where Φ(·) is defined in Eq. (5.66). □
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An integral formula for the inverse Laplace transform, called the Fourier -

Mellin integral, the Bromwich integral (1916), and Mellin’s inverse formula, is

given by the line integral:

φK̂
Â,B̂

(τ) =
{
L−1Ψ

}
(τ) =

1

2πi
lim
y→∞

∫ η+iy

η−iy

eλτΨ(λ) dλ (5.71)

where η lies to the right of any singularity of the Laplace transform Ψ(λ).

Practically we calculate the inverse Laplace transform
{
L−1Ψ

}
(τ) numerically

instead of calculating the line integral in Eq. (5.71) analytically. Instead of using

a straight line contour, one can use a deformed contour Γ ∈ C parameterized by

Γ : z(ω) = x(ω) + iy(ω), −∞ < ω < ∞ with lim
ω→±∞

x(ω) = 0 (5.72)

as long as all the singularities of the integrand lie to the left of Γ. Moreover,

practically we choose a contour such that it is symmetric with respect to the real

axis. Then the complex conjugacy relation leads to the following representation

of integral:

{
L−1Ψ

}
(τ) =

1

π

∫ ∞

0

eτx(ω) Im

[
eiτy(ω)Ψ(z(ω))

dz

dω

]
(ω) dω. (5.73)

As a numerical approximation, a composite trapezoidal quadrature rule with

interval size ∆ω leads to

{
L−1Ψ

}
(τ) ≈ 1

π

∑′N

j=0
eτx(ωj) Im

[
eiτy(ωj)Ψ(z(ωj))

dz

dω
(ωj)

]
∆ω, (5.74)

where ωj = j∆ω, j = 1, · · · , N, and
∑′N

j=0 means the summand with j = 0

being halved. Of course, equivalently, a composite midpoint rule can be applied.

For such deformed contours, numerical solutions will converge very quickly since

the exponential factor eτx(ω), with x(ω) < 0 for most of ω, plays a significant
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role in taming the oscillatory integrand in Eq. (5.73) to decay exponentially

fast. Among several others, there have been three types of contours which have

been analyzed and popular recently: the Talbot, parabola, and hyperbola types

of contours. For details, refer toTalbot (1979), Gavrilyuk and Makarov (2001,

2005, 2007), Sheen, Sloan, and Thomée, (2000, 2003), López-Fernández and

Palencia (2004), López-Fernández, Palencia, and Schädle (2006), Lee and Sheen

(2009, 2011), Lee, Lee, and Sheen (2013), and Kim and Sheen (2015a). In this

study a hyperbola contour of the form is chosen:

Γ : z(ω) = x(ω) + iy(ω),

x(ω) = µ(1− sinα coshω), y(ω) = µ cosα sinhω (5.75)

with optimal parameters µ, α, and ∆ω chosen as suggested in Weideman (2006,

2010), Weideman and Trefethen (2007), and Kim and Sheen (2015b).

6 Approximation of the UODO Values

We know from Eq. (5.3) that

CUODO
t = e−rτ

∫ γB

k

[ST −K]
+
pQ (xt, t;xT , T ) dxT , (6.1)

where pQ is either pQG or pQF . If p̂ (xt, t;xT , T ) is a good approximation of pQ,

then we can approximate CUODO
t as

ĈUODO
t

.
= e−rτ

∫ γB

k

[ST −K]
+
p̂ (xt, t;xT , T ) dxT . (6.2)
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6.1 Gaussian Series solution

Let

c0 (xT )
.
= ϕ

(
xT ;xt + νrτ, σ

2τ
)
. (6.3)

For m = 1, 2, · · · , let

c2m (xT )
.
= exp

(
2m [γB − γA] νr

σ2

)
ϕ
(
xT ;xt + νrτ + 2m [γB − γA] , σ

2τ
)

+ exp

(
−2m [γB − γA] νr

σ2

)
ϕ
(
xT ;xt + νrτ − 2m [γB − γA] , σ

2τ
)
,

(6.4)

and

c2m−1 (xT )
.
= exp

(
2 {mγB − [m− 1]γA − xt} νr

σ2

)
· ϕ
(
xT ;xt + νrτ + 2[m− 1] [γB − γA] + 2γB, σ

2τ
)

+ exp

(
2 {[−m+ 1]γB +mγA − xt} νr

σ2

)
· ϕ
(
xT ;xt + νrτ − 2m [γB − γA] + 2γB , σ

2τ
)
. (6.5)

Eq. (5.11) implies

pQG (xt, t;xT , T ) =
∞∑

n=0

[−1]ncn (xT ) . (6.6)

Define an approximation of pQG (xt, t;xT , T ) by

p̂
(N)
G (xt, t;xT , T )

.
=

N∑
n=0

[−1]ncn (xT ) . (6.7)

It is trivial that
∞∑

n=0
[−1]ncn (xT ) is an alternating series. We can show that

{cn (xT )} is positive and decreasing for each xT ∈ [γA, γB], and that

lim
n→

cn (xT ) = 0, (xT ∈ [γA, γB ]) . (6.8)
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Thus, the alternating series test implies
∞∑

n=0
[−1]ncn (xT ) converges, and

∣∣∣∣∣pQG (xt, t;xT , T )− p̂
(N)
G (xt, t;xT , T )

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
n=N+1

[−1]ncn (xT )

∣∣∣∣∣ ≤ cN+1 (xT ) .

(6.9)

Define an approximation of CUODO
t;G by

Ĉ
(N)
t;G

.
= e−rτ

∫ γB

k

[ST −K]
+
p̂
(N)
G (xt, t;xT , T ) dxT . (6.10)

We know

∣∣∣CUODO
t;G − Ĉ

(N)
t;G

∣∣∣
≤

∣∣∣∣∣e−rτ

∫ γB

k

[ST −K]
+
[
pQ (xt, t;xT , T )− p̂

(N)
G (xt, t;xT , T )

]
dxT

∣∣∣∣∣
≤ e−rτ

∫ γB

k

[ST −K]
+
∣∣∣pQ (xt, t;xT , T )− p̂

(N)
G (xt, t;xT , T )

∣∣∣dxT

≤ e−rτ [B −K]

∫ γB

k

cN+1 (xT ) dxT

≤ e−rτ [B −K] [γB − k] max
k≤xT≤γB

cN+1 (xT ) . (6.11)

Eqs. (5.9) and (6.4) imply

max
k≤xT≤γB

c2m (xT )

= exp

(
2m [γB − γA] νr

σ2

)
ϕ
(
γB ;xt + νrτ + 2m [γB − γA] , σ

2τ
)

+ exp

(
−2m [γB − γA] νr

σ2

)
ϕ
(
k;xt + νrτ − 2m [γB − γA] , σ

2τ
)
. (6.12)

Thus, for large m,

max
k≤xT≤γB

c2m (xT )

≈ exp

(
2m [γB − γA] νr

σ2

)
ϕ
(
γB;xt + νrτ + 2m [γB − γA] , σ

2τ
)
. (6.13)
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Eqs. (5.9) and (6.5) imply

max
k≤xT≤γB

c2m−1 (xT )

= exp

(
2 {mγB − [m− 1]γA − xt} νr

σ2

)
· ϕ
(
γB ;xt + νrτ + 2[m− 1] [γB − γA] + 2γB , σ

2τ
)

+ exp

(
2 {[−m+ 1]γB +mγA − xt} νr

σ2

)
· ϕ
(
k;xt + νrτ − 2m [γB − γA] + 2γB , σ

2τ
)
. (6.14)

Thus, for large m,

max
k≤xT≤γB

c2m−1 (xT )

≈ exp

(
2 {mγB − [m− 1]γA − xt} νr

σ2

)
· ϕ
(
γB;xt + νrτ + 2[m− 1] [γB − γA] + 2γB , σ

2τ
)

≈ exp

(
[2m− 1] [γB − γA] νr

σ2

)
ϕ
(
γB ;xt + νrτ + [2m− 1] [γB − γA] , σ

2τ
)
.

(6.15)

It should be noted that

c1 (xT )
.
= exp

(
2 {γB − xt} νr

σ2

)
ϕ
(
xT ;xt + νrτ + 2γB , σ

2τ
)

+ exp

(
2 {γA − xt} νr

σ2

)
ϕ
(
xT ;xt + νrτ + 2γA, σ

2τ
)
. (6.16)

Thus, the approximation max
k≤xT≤γB

c2m−1 (xT ) in Eq. (6.15) is not eligible for

max
k≤xT≤γB

c1 (xT ). We know from Eqs. (6.13) and (6.15) that, for large n,

max
k≤xT≤γB

cn (xT )

≈ exp

(
n [γB − γA] νr

σ2

)
ϕ
(
γB;xt + νrτ + n [γB − γA] , σ

2τ
)

=
1

σ
√
2πτ

exp

(
−{xt + νrτ + n [γB − γA]− γB}2

2σ2τ

)

· exp
(
−ν {2[xt + νrτ ]− 2γB − νrτ}

2σ2

)
. (6.17)
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Set

e
(N)
G

.
= αG exp

(
−{xt + νrτ + [N + 1] [γB − γA]− γB}2

2σ2τ

)
, (6.18)

where

αG
.
=

e−rτ [B −K] [γB − k]

σ
√
2πτ

exp

(
−ν [2xt + νrτ − 2γB ]

2σ2

)
. (6.19)

Eqs. (6.11), (6.16), and (6.17) imply the following theorem.

Theorem 2. For large N , e(N)
G is an approximate error bound of an approxi-

mate value Ĉ
(N)
t;G for the true value CUODO

t;G . Moreover, if N > N∗
G, where

N∗
G

.
= max

{
1

γB − γA

[
γB − xt +

√
−2σ2τ ln

ϵ

αG

]
− 1, 1

}
,

then e
(N)
G is less than a small ϵ > 0.

Let

CG
0

.
= St [N (d1,0)−N (d2,0)]

− e−rτK
[
N
(
d1,0 − σ

√
τ
)
−N

(
d2,0 − σ

√
τ
)]

. (6.20)

For m = 1, 2, · · · , let

CG
2m

.
=

{
St

[
Bm

Am

]2r/σ2+1

[N (d1,m)−N (d2,m)]

−e−rτK

[
Bm

Am

]2r/σ2−1 [
N
(
d1,m − σ

√
τ
)
−N

(
d2,m − σ

√
τ
)]}

+

{
St

[
B−m

A−m

]2r/σ2+1

[N (d1,−m)−N (d2,−m)]

−e−rτK

[
B−m

A−m

]2r/σ2−1 [
N
(
d1,−m − σ

√
τ
)
−N

(
d2,−m − σ

√
τ
)]}

,

(6.21)
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and

CG
2m−1

.
=

{
St

[
A

St

Am

Bm

]2r/σ2+1

[N (d3,m)−N (d4,m)]

−e−rτK

[
A

St

Am

Bm

]2r/σ2−1 [
N
(
d3,m − σ

√
τ
)
−N

(
d4,m − σ

√
τ
)]}

+

{
St

[
A

St

A1−m

B1−m

]2r/σ2+1

[N (d3,1−m)−N (d4,1−m)]

−e−rτK

[
A

St

A1−m

B1−m

]2r/σ2−1 [
N
(
d3,1−m − σ

√
τ
)
−N

(
d4,1−m − σ

√
τ
)]}

.

(6.22)

We know from Eqs. (6.7) and (6.10) that

Ĉ
(N)
t;G =

N∑
n=0

[−1]nCG
n . (6.23)

6.2 Fourier Series solution

Define an approximation of pQF (xt, t;xT , T ) by

p̂
(N)
F (xt, t;xT , T )

.
=

N∑
n=1

dn (xT ) , (6.24)

where

dn (xT )
.
=

2

γB − γA
exp

(
νr [xT − xt]

σ2

)
e−λnτ

· sin
(
nπ [xT − γA]

γB − γA

)
sin

(
nπ [xt − γA]

γB − γA

)
. (6.25)

It is clear that

|dn (xT )| ≤
2

γB − γA
exp

(
νr [xT − xt]

σ2

)
e−λnτ , (n = 1, 2, · · · ). (6.26)

Applying the ratio test and the comparison test, we can show
∞∑

n=1
dn (xT ) con-

verges absolutely. Define an approximation of CUODO
t;F by

Ĉ
(N)
t;F

.
= e−rτ

∫ γB

k

[ST −K]
+
p̂
(N)
F (xt, t;xT , T ) dxT . (6.27)
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Thus,

Ĉ
(N)
t;F

.
= e−rτ

∫ γB

k

[ST −K]
+

N∑
n=1

dn (xT ) dxT . (6.28)

We know from Lemma 12 and Eq. (6.28) that

Ĉ
(N)
t;F =

N∑
n=1

2

γB − γA
sin

(
nπ [xt − γA]

γB − γA

)
·
{
StJn

(
r +

σ2

2

)
−Ke−rτJn

(
r − σ2

2

)}
. (6.29)

Eqs. (5.35), (6.24), and 6.25 imply

pQF (xt, t;xT , T ) =
∞∑

n=1

dn (xT ) . (6.30)

Thus,

CUODO
t;F = e−rτ

∫ γB

k

[ST −K]
+

∞∑
n=1

dn (xT ) dxT . (6.31)

Eqs. (6.28) and (6.31) imply

∣∣∣CUODO
t;F − Ĉ

(N)
t;F

∣∣∣
=

∣∣∣∣∣e−rτ

∫ γB

k

[ST −K]
+

∞∑
n=N+1

dn (xT ) dxT

∣∣∣∣∣
≤ e−rτ [B −K]

∞∑
n=N+1

∫ γB

k

|dn (xT )| dxT

≤ e−rτ [B −K]
2

γB − γA

∫ γB

k

exp

(
νr [xT − xt]

σ2

)
dxT

∞∑
n=N+1

e−λnτ , (6.32)

where the last inequality holds by Eq. (6.26). Clearly,

∫ γB

k

exp

(
νr [xT − xt]

σ2

)
dxT

=

{
σ2

νr
exp

(−νrxt

σ2

) {
exp

(
νrγB

σ2

)
− exp

(
νrk
σ2

)}
, (νr ̸= 0),

γB − k, (νr = 0).
(6.33)
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We know

∞∑
n=N+1

e−λnτ

= exp

(
− ν2r
2σ2

τ

) ∞∑
n=N+1

exp

(
− π2σ2n2

2 [γB − γA]
2 τ

)

= exp

(
− ν2r
2σ2

τ

)
exp

(
−π2σ2[N + 1]2

2 [γB − γA]
2 τ

) ∞∑
k=0

exp

(
−π2σ2[2N + 2 + k]k

2 |γB − γA|2
τ

)

≤ exp

(
− ν2r
2σ2

τ

)
exp

(
−π2σ2[N + 1]2

2 [γB − γA]
2 τ

) ∞∑
k=0

exp

(
− π2σ2 ·Nk

|γB − γA|2
τ

)

≤ exp

(
− ν2r
2σ2

τ

)
exp

(
−π2σ2[N + 1]2

2 [γB − γA]
2 τ

)[
1− exp

(
− π2σ2N

|γB − γA|2
τ

)]−1

.

(6.34)

If N ≥ [γB − γA]
2
/
[
π2σ2τ

]
, then Eq. (6.34) implies

∞∑
n=N+1

e−λnτ ≤ exp

(
− ν2r
2σ2

τ

)
exp

(
−π2σ2[N + 1]2

2 [γB − γA]
2 τ

)
e

e− 1
. (6.35)

If νr ̸= 0, then let

αF
.
=

2e[B −K]σ2

[e− 1] [γB − γA]
exp

(
−
{
rτ +

νrxt

σ2
+

ν2r
2σ2

τ

})
· 1

νr

{
exp

(νrγB
σ2

)
− exp

(
νrk

σ2

)}
. (6.36)

If νr = 0, then let

αF
.
=

2e[B −K] [γB − k]

[e− 1] [γB − γA]
exp (−rτ) . (6.37)

Also, let

e
(N)
F

.
= αF exp

(
−π2σ2[N + 1]2

2 [γB − γA]
2 τ

)
, (6.38)

Eqs. (6.32), (6.33) and (6.35) imply∣∣∣CUODO
t;F − Ĉ

(N)
t;F

∣∣∣ ≤ e
(N)
F . (6.39)

Eqs. (6.38) and (6.39) imply the following theorem.
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Theorem 3. For large N , e(N)
F is an error bound of an approximate value Ĉ

(N)
t;F

for the true value CUODO
t;F . Moreover, if

N ≥ max

{
[γB − γA]

2

π2σ2
,
γB − γA

πσ

√
−2

τ
ln

ϵ

αF
− 1

}
,

then e
(N)
F is less than a small ϵ > 0.

We know from Lemma 12 that

Ĉ
(N)
t;F =

N∑
n=1

2

γB − γA
sin

(
nπ [xt − γA]

γB − γA

)
·
{
StJn

(
r +

σ2

2

)
−Ke−rτJn

(
r − σ2

2

)}
.

7 Numerical Examples

We compute the fair value of an UODO option in four different settings as

in Table 1, which was presented by Geman and Yor (1996). The standard

deviation of Monte Carlo estimates is computed on a sample of 200 evaluations,

each evaluation being performed on 5000 Monte Carlo paths.

7.1 Gaussian Series solution

In Case 1, the iteration stopping number with ϵ = 10−12 is 2.266. Thus, we

let N∗
G = 3. The Gaussian series solution is in Table 2. In the table, the term

No. CDF’s means the number of normal cumulative distribution functions to

be calculated. In this case, 28 normal cumulative distribution functions should

be calculated to have an error less than 10−12 in absolute value.
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Table 1: Geman and Yor’s Examples

Case 1 Case 2 Case 3 Case 4
(t, T, St) (0, 1, 2) (0, 1, 2) (0, 1, 2) (0, 1/12, 2.4)
(σ, r,K) (0.2, 0.02, 2) (0.5, 0.05, 2) (0.5, 0.05, 1.75) (0.2, 0.02, 2)
(A,B) (1.5, 2.5) (1.5, 3) (1, 3) (1.5, 2.5)

νr = r − σ2

2 0 -0.075 - 0.075 0
BS
(
0, 1, σ, τ, K̂

)
0.0892 0.2179 0.27646 0.1681

e−rτ
{
L−1Ψ

}
(τ) 0.0687 0.2090 0.23838 0.23015

Laplace Solution 0.0411 0.0178 0.07615 0.17321
Gaussian Solution 0.041089 0.017856 0.076172

Monte Carlo 0.0425 0.0191 0.0772 0.1739
(st. dev) (0.003) (0.003) (0.003) (0.008)

Table 2: Gaussian Series Solution of Case 1

n No. CDF’s Gaussian Solution Error
0 4 0.077,810,462 -0.0367
1 12 0.041,075,978 1.3E-5
2 20 0.041,088,551 -1E-10
3 28 0.041,088,550 0
4 36 0.041,088,550 0

In Case 2, the iteration stopping number with ϵ = 10−12 is 4.819. Thus,

we let N∗
G = 5. The Gaussian series solution is in Table 3. In this case, 44

normal cumulative distribution functions should be calculated to have an error

less than 10−12 in absolute value.

In Case 3, the iteration stopping number with ϵ = 10−12 is 2.7028. Thus,

we let N∗
G = 3. The Gaussian series solution is in Table 4. In this case, 28

normal cumulative distribution functions should be calculated to have an error

less than 10−12 in absolute value.

In Case 4, the iteration stopping number with ϵ = 10−12 is 1. Thus, we let

N∗
G = 1. The Gaussian series solution is in Table 5. In this case, 12 normal
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Table 3: Gaussian Series Solution of Case 2

n No. CDF’s Gaussian Solution Error
0 4 0.111,175,114 -0.0933
1 12 0.005,646,212 0.0122
2 20 0.017,962,639 -0.0001
3 28 0.017,856,332 6.9E-7
4 36 0.017,857,021 -7.1E-12
5 44 0.017,857,021 2.2E-14
6 52 0.017,857,021 0
7 60 0.017,857,021 0

Table 4: Gaussian Series Solution of Case 3

n No. CDF’s Gaussian Solution Error
0 4 0.188,218,320 -0.1120
1 12 0.076,035,418 0.0001
2 20 0.076,172,370 -8.3E-8
3 28 0.076,172,287 -1E-15
4 36 0.076,172,287 0
5 44 0.076,172,287 0

cumulative distribution functions should be calculated to have an error less than

10−12 in absolute value.

Table 5: Gaussian Series Solution of Case 4

n No. CDF’s Gaussian Solution Error
0 4 0.262,731,403 -0.0999
1 12 0.162,824,119 0
2 20 0.162,824,119 0

7.2 Fourier Series solution

In Case 1, the iteration stopping number with ϵ = 10−12 is 5.0010. Thus, we

let N∗
F = 6. The Fourier series solution is in Table 6. From this table, we know

that N∗
F = 5 is enough to have an error less than 10−12 in absolute value.
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Table 6: Fourier Series Solution of Case 1

n Fourier Solution Error
1 0.038,805,445 0.0023
2 0.041,199,030 -0.0001
3 0.041,088,893 -3.4E-7
4 0.041,088,550 1.9E-10
5 0.041,088,550 6.4E-14
6 0.041,088,550 0
7 0.041,088,550 0

In Case 2, the iteration stopping number with ϵ = 10−12 is 2.310. Thus, we

let N∗
F = 3. The Fourier series solution is in Table 7.

Table 7: Fourier Series Solution of Case 2

n Fourier Solution Error
1 0.017,862,164 -5.1E-6
2 0.017,857,021 -1.3E-11
3 0.017,857,021 0
4 0.017,857,021 0

In Case 3, the iteration stopping number with ϵ = 10−12 is 4.252. Thus, we

let N∗
F = 5. The Fourier series solution is in Table 8. From this table, we know

that N∗
F = 4 is enough to have an error less than 10−12 in absolute value.

Table 8: Fourier Series Solution of Case 3

n Fourier Solution Error
1 0.072,386,928 0.0038
2 0.076,180,974 -8.7E-6
3 0.076,172,301 1.3E-8
4 0.076,172,287 -4.4E-13
5 0.076,172,287 0
6 0.076,172,287 0
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In Case 4, the iteration stopping number with ϵ = 10−12 is 19.795. Thus, we

let N∗
F = 20. The Fourier series solution is in Table 9. From this table, we know

that N∗
F = 19 is enough to have an error less than 10−12 in absolute value.

Table 9: Fourier Series Solution of Case 4

n Fourier Solution Error
1 0.020,036,024 0.1428
2 0.068,650,707 0.0942
3 0.116,212,209 0.0466
10 0.162,818,805 5.3E-6
15 0.162,824,121 - 1.7E-9
18 0.162,824,119 - 2.3E-12
19 0.162,824,119 - 1.8E-13
20 0.162,824,119 -1.2E-14
21 0.162,824,119 0
22 0.162,824,119 0

7.3 Laplace transform Solution

In Case 1, the Black-Scholes price is

BS (0, 1, 0.2, 1, 2/2) = 8.916, 037, 279× 10−2. (7.1)

Denote by nCQP the number N of quadrature points on the deformed contour

(5.75) in the numerical Laplace inversion formula (5.74). We remarks that the

numerical solutions by this Laplace inversion algorithms are calculated using

quadruple precision. The Laplace transform solution is in Table 10.

In Case 2, the Black-Scholes price is

BS (0, 1, 0.5, 1, 2/2) = 0.217, 926, 042. (7.2)

The Laplace transform solution is in Table 11.
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Table 10: Laplace Transform Solution of Case 1

n nCQP e−rτ
{
L−1Ψ

}
(τ) Laplace Solution

1 10 6.861,609,798E-2 4.108,854,961E-2
2 13 6.861,609,757E-2 4.108,855,044E-2
3 16 6.861,609,757E-2 4.108,855,044E-2
4 19 6.861,609,757E-2 4.108,855,044E-2
5 22 6.861,609,757E-2 4.108,855,044E-2

Table 11: Laplace Transform Solution of Case 2

n nCQP e−rτ
{
L−1Ψ

}
(τ) Laplace Solution

1 10 0.208,997,533 1.785,701,821E-2
2 13 0.208,997,532 1.785,702,099E-2
3 16 0.208,997,532 1.785,702,099E-2
4 19 0.208,997,532 1.785,702,099E-2
5 22 0.208,997,532 1.785,702,099E-2

In Case 3, the Black-Scholes price is

BS (0, 1, 0.5, 1, 1.75/2) = 0.276, 458, 376. (7.3)

The Laplace transform solution is in Table 12.

Table 12: Laplace Transform Solution of Case 3

n nCQP e−rτ
{
L−1Ψ

}
(τ) Laplace Solution

1 10 0.237,611,543 7.769,366,677E-2
2 13 0.237,611,542 7.769,366,938E-2
3 16 0.237,611,542 7.769,366,939E-2
4 19 0.237,611,542 7.769,366,939E-2
5 22 0.237,611,542 7.769,366,939E-2

In Case 4, the Black-Scholes price is

BS (0, 1, 0.2, 1/12, 2/2.4) = 0.168, 064, 640. (7.4)

The Laplace transform solution is in Table 13.
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Table 13: Laplace Transform Solution of Case 4

n nCQP e−rτ
{
L−1Ψ

}
(τ) Laplace Solution

1 10 0.236,555,390 0.166,799,747
2 13 0.236,555,390 0.166,799,747
3 16 0.236,555,390 0.166,799,747
4 19 0.236,555,390 0.166,799,747
5 22 0.236,555,390 0.166,799,747

8 Conclusion

The trivariate joint probability density of Brownian motion and its maximum

and minimum is represented by two infinite product forms. The two infinite

product formulas are computationally more efficient than the previous known

Gaussian and Fourier infinite series formulas. A general form of the joint prob-

ability density is proposed, which is a linear combination of the two infinite

product formulas as well as Gaussian and Fourier infinite series formulas. Using

the trivariate joint probability densities, a double barrier option can be priced

under the Black-Scholes environment. In practice it is necessary to use some

approximate prices of a double barrier option, for the joint probability density

is represented by infinite series or infinite products. In this paper we present

Gaussian series and Fourier series approximations of an UODO option, their

error bounds, and stopping rules for approximations.

Numerical examples of calculating some UODO option values are presented

to show usefulness of the approximations. For that purpose we also calculate

them using the inverse Laplace transform. From the experiments we can con-

clude that either the Gaussian approximation or the Fourier approximation is

more accurate than the inverse Laplace transform solution, and that the Fourier

approximation is much faster than Gaussian one. However, when the tenor τ is

small, the Gaussian approximation converges very fast.
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